

venture investing

EARLY | ACTIVE | COMMITTED

Building Fuel Cell Companies – Challenges & Opportunities

Marianne Wu May 31, 2006

Agenda

- About MDV
- Cleantech Venture Investment Trends
- Fuel Cell Market Overview
 - Opportunities
 - Challenges

Building Category Leading Companies

- Founded 1983
- Eight funds raised
- \$1.4 B under management
- Early Stage focus
- Significant Tech transfer expertise and experience

Investment Areas

- Energy and Materials
- Internet Services
- Life Sciences
- Semiconductors
- Software and Systems

What We Look For

- Breakthroughs in engineering and science going after huge new markets
- Opportunity for disruptive technology to displace incumbents with significant value proposition
- Accessible channel for startups
- Diversified customer set
- High margin businesses

Market Solutions not Technology Platforms

Trends Driving Energy Technology

3 Great Trends define the present day:

- Demographic, as we multiply from 6B to 9B people
- Economic, as the 2nd Wave of Global Industrialization rages
- Environmental, as we operate within the Earth's resources

Resulting in:

- Fundamental shift in demand curve for materials and energy forms
- Supply constraints due to resource limitations or infrastructure
- Strained shared resources (air, water, land)
- An increasingly electrified world due to Moore's and Metcalfe's Laws

Emerging Technologies for Energy Tech and Materials

- Nanotechnology ability to structure materials at the molecular level
- Materials design becoming CAD ability to use high level design and synthesis tools for materials other than Si
- Chemistry, Biology and Process Technologies ability to leverage biology and large scale processing technologies
- New and improved manufacturing technologies for lower cost at economic scale or distributed manufacturing
- IT technologies spilling over to secondary markets through commoditization and volume
 - Photonics and optical systems
 - Computational and simulation techniques
 - Semiconductor devices, processing and manufacturing technologies

VC Interest in Energy is Growing

North American Cleantech Venture Deals (Europe is ~40%, Asia is~ 10% of NA)

Total Cleantech Venture Investing 1999-2005: \$8.2B

Source: Cleantech Venture Network

Two Phases of Investment

Bubble & Burst

Learning & Diversification

In Q405 Cleantech represented 9% of NA VC investment

Source: Cleantech Venture Network

Cleantech Investment by Segment

Cleantech segments: by amount invested 1999 - 2005

Energy-related deals are leading: 43% of total cleantech by amount; 36% of number of cleantech deals.

Source: Cleantech Venture Network

Fuel Cell Markets

Application	Current Sources	Power (kW)	Markets	FC Types
Stationary / Distributed Generation	Grid (Coal, NG, Hydro)	1 – 10,000	Utility, Industrial, Commercial, Residential	SOFC MCFC PEMFC
Transportation (Drive)	IC Engine HEV	50 – 200	Automotive, Marine, Aerospace	PEMFC SOFC
Transportation (APU)	IC Engine	5 – 10	Trucks, Airplanes, Buses	SOFC PEMFC
Portable	Battery, Genset	0.1 – 5	Military, First responder, Bac	PEMFC SOFC
Micro	Battery	< 0.1	Cell phones, PDAs	DMFC PEMFC SOFC

Many Companies developing Fuel Cell Technology

Fuel Cell Technology - Still Early Stages

Primary issue today is cost – focus on high value energy

Not all Watts are Equal

	Value	
Wholesale power	\$0.04 / kWhr	
Retail power (baseline)	\$0.08 / kWhr	
Retail power (peak)	\$0.20 / kWhr	
Portable power		
Primary (Alkaline)	\$500 / kWhr	
Secondary (Lilon)	\$24.00 / kWhr	
Transportation		
Energy (gas@\$3/gallon)	\$0.09 /kWhr	
 Efficiency of gas engine vs fuel cell 	\$0.35 / kWhr	

Portable Applications – Market Opportunity

Mobile devices

2001=100

Source: Boston Consulting Group

Portable Applications

Applications:

- Micro cell phones, PDAs, lap tops
- Portable power tools, broadcast cameras, military, first responders

Challenges

- Incumbent technology: batteries, power cord to recharge
- Market landscape: consumer electronics vertically integrated
- Fuel infrastructure

Focus on mission-critical applications for strong value proposition

- Broadcast camera operators
- First responders
- Military

Stationary Applications – Opportunity

Fuel Cells are ideal distributed generators, enabling power to be sited at "point of use"

- Eliminate grid transmission losses
- User security and control over own operations

Technology promises many benefits

- Very high conversion efficiencies
- Low emissions no combustion
- High reliability no moving parts
- High quality power
- Quiet operation

Stationary Applications

Challenges:

- Distributed Generation has very limited role today
 - 234 GW DG installed in the US, 30 GW grid interconnected
 - 81% is standby and back-up power generation
 - 86% of generators are internal combustion engines
- Diesel Gensets are cheap!

Need to create compelling economics

- > 16 cents / kWhr-> < ~10 cents / kWhr
- >\$4000 / kW installed -> < \$1000 / kW installed

Source: EPRI

Transportation Applications – Opportunity

- Environmental pressure to reduce emissions
- Homeland security pressure to reduce dependence on "foreign oil"

20-25% conversion efficiency

Significant emissions

55% conversion efficiency

Emissions: Heat and water

Transportation Applications

Challenges

- Very conservative industry dominated by large players, slow to adopt
- Strongly entrenched incumbent technology
- Significant fuel infrastructure issues
- Other emerging contenders for "green" transportation are gaining momentum
 - Hybrid, Plug-in hybrid
 - Biofuels E85, biodiesel
 - Both leverage existing infrastructure

Focus on likely early adopters: buses, fleets, forklifts

Have patience

 Need disruptive technologies, economics and proven performance to drive change

Summary

- Fuel Cell technologies are promising across a number of markets
- But technology is still expensive and not generally proven
- Infrastructure issues for fueling are significant for portable and transportation applications
- Too much focus on "killer app" / mainstream app, must start with narrower focus
- Start-ups should focus on targeted applications with strong financial value proposition

Thank you

Contact me: mwu@mdv.com

For more information: www.mdv.com